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ABSTRACT

A variety of techniques are available for estimating the states of

non-linear dynamic systems from noisy data. These procedures are gen­

erally equivalent when applied to linear systems. This dissertation

investigates the difference between several of these procedures in the

presence of small dynamic and observational non-linearities.

Four discrete estimation algorithms are analyzed. The first is a

strictly least square estimator, while the other three are recursive

algorithms similar to the Kalman filter used for estimating the states

of linear systems. The product of this research is a group of analytic

expressions for the mean and covariance of the error in each of these

estimators so that they may be compared without lengthy Monte-Carlo

simulations.

The covariance expressions show that, to first order, all the esti­

mators have the same covariance. Expressions for the means, however,

show that each estimator has a different bias. Several examples are

carried out demonstrating that the relative magnitudes of the bias errors

in the various estimators can be a strong function of such parameters

as initial covariances and number of data points being considered. In

fact, under some circumstances it appears that more complicated (seemingly

superior) algorithms can have larger biases than smaller ones.
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1. INTRODUCTION

1.1 Statement of the Problem

In the last decade, much attention has been focused on the problem

of extracting information about a system from noisy measurement data.

Work in the area of state estimation for linear dynamic systems has

yielded especially useful results, producing a good understanding of

the overall problem as well as effective general purpose procedures for

processing noisy data from such systems. Comparable results have not

been obtained for broad classes of non-linear dynamic systems, but ex­

perience has shown good state estimates of many such systems can be re­

alized by using algorithms based on various extensions of the linear

theory. A goal of this dissertation is to find an analytic basis for

a comparison between some of the more popular algorithms as applied to

a class of multi-dimensional discrete dynamic systems which can be char­

acterized as "slightly non-linear".

In the scalar case these "slightly non-linear" systems are described

by a state x
k

which satisfies the difference equation

k = 0,1,2, .•. , N

and noisy measurements Yk assumed to obey the observation equation

The parameters ~k' ~, 1k and e k are assumed known, and the problem

is such that terms involving the second two parameters can be assumed

small. The sequences qk and v
k

are random variables constituting

"noise" and Xo is an unknown random variable. Precise definitions of

all these quantities is deferred to Chapter 2 which contains a descrip­

tion of the multi-dimensional slightly non-linear system.

Given a sequence of data Yi' i = 1,2, •.• , N, from such a system,

the following algorithms might be used to estimate x
N

:
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1. The classical least square fitting procedure (LS algorithm)

2. An extended Kalman Filter obtained by linearizing about a
predicted state based on the current best estimate (EK algo­
rithm)

3. A procedure similar to Kalman's but based on making approxi­
mate step by step minimum variance estimates up to first or­
der (AM algorithm)

4. An iterative algorithm similar to (2) above but linearizing
about a current best estimate, thus requiring a simple itera­
tion (IT algorithm).

These algorithms are also defined explicitly in Chapter 2. The third

one presents a slight difficulty, since it has not been derived for

discrete systems. Assuming any of these algorithms will give a reason­

able estimate of x
N

for a particular system, an analyst may choose to

compare them in terms of the bias or error covariance histories they

imply. This dissertation seeks to find approximate analytic expressions

for these histories.

The purpose of such an analysis is twofold. First, most systems

are at least slightly non-linear. In the case of very precise data

fitting requirements it would be desirable to have expressions which

predict the possible effects of these non-linearities on a particular

estimation scheme. For example, Stanford University is considering

measuring a small relativistic phenomenon via an orbiting gyroscope

and it is important that there are no errors in the estimation algorithm

which could dwarf the parameters being determined.

Second, it is hoped that an understanding of the slightly non-linear

estimation problem can lend some intuition to the limitations of these

common estimation schemes for larger non-linearities which often occur

when measurements are complicated (often geometric) functions of the

states and the system random variables contain large uncertainties.

This situation frequently arises when only a few observations from a

system are available.
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1.2 Previous Results

In the last ten years more analytic effort has been devoted toward

finding optimal general purpose filters for continuous non-linear fil­

ters than on analyzing currently available algorithms.* Much of this

work is typified by Bass et.al. (Ref. 4). Their emphasis on continuous

(as opposed to discrete) systems is motivated by the desire to utilize

continuity properties to obtain diffusion equations describing the rele­

vant conditional probabilities on which any optimal state estimate must

depend. Major drawbacks to much of this work have been:

a. the necessity of dealing with complicated mathematical concepts
associated with continuous non-linear functions of stochastic
processes

b. the production of solutions in terms of hard to solve partial
differential equations

c. the difficulty in interpreting the validity of approximate
solutions to the partial differential equations in terms of
constraints on real problems and

d. the lack of explicit information on whether filters so derived
will yield advantages over better known, and often simpler,
procedures.

In 1966, Jazwinski (Ref. 9) unsuccessfully attempted** to derive a

discrete analogue to the non-linear filters discussed above. Two years

*Much of this work appears to be motivated by attempts to find filter-
ing solutions which are both "optimal" and straightforwardly practical
in the same sense as those of Kalman's, e.g. (Ref. 10) for linear sys­
tems. For practical purposes, however, the concept of optimality is
often of secondary importance since the statistics, and indeed the
whole model, are seldom known precisely. In fact, the general form
of the Kalman filter has been used to solve many problems without sat­
isfying any of the requirements necessary for it to be optimal. The
chief benefit of Kalman's work appears to be its emphasis on the rela­
tionship between the structure of the linear systems producing data and
their corresponding filters.

**
The writer has been able to isolate a fundamental error in Jazwinski's
approach. In fact, R. Curran, a research assistant at Stanford Univer­
sity, found Jazwinski's algorithm to be unstable for some simple prob­
lems.
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later, Athans et. al. (Ref. 2) presented a partial discrete analogue to

the approximate non-linear filters of Bass et. al. The word "partial"

is used because they did not consider state noise and the dynamics were

assumed continuous while observations were assumed discrete. A drawback

of their derivation appears to be that terms which turned out to be em­

pirically negligible were not recognized as such. Athans used Monte

Carlo techniques to evaluate his filter for a particular problem.

Breakwell, in Ref. 5, undertook the task of analyzing several pop­

ular estimation schemes as applied to slightly non-linear parameter es­

timation problems. In particular, he derived approximate relations for

the mean and covariance of the least-square filter, the extended Kalman

filter and an iterated version of the latter. These relations produced

the surprising result that, although the least-square algorithm was al­

ways best, the iterated filter could have larger bias errors than the

simpler extended Kalman filter. Furthermore, he found that all the es­

timators (to first order) had the same covariance.

1.3 New Results

The folloWing objectives were achieved in this research effort.

First, a simple development of a second order discrete analogue of the

continuous filters of Bass, et. al. has been found. This filter is

slightly more general than that of Athans, and the terms which they

found to be negligible empirically do not occur. This filter is devel­

oped in Section 2.4 and analyzed in Section 3.3.

Second, approximate equations have been found for comparing the

difference between the bias and covariance of four estimators: the

least-square (LS); the extended Kalman (EK); the second order approxi­

mate minimum variance (AM); and the iterated extended Kalman (IT). An

explicit mathematical development of each of these algorithms is con­

tained in Chapter 2, along with a precise definition of the slightly

non-linear systems for which they were analyzed. The actual analysis

of these algorithms in terms of bias and covariance expressions is

carried out in Chapter 3.
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Although each estimator has a different bias history (to first

order), their covariances all turn out to be the same. Furthermore,

the only difference between the slightly non-linear covariance, and

one computed ignoring all non-linearities, is a term linearly related

to the a priori mean of the initial state x. If the model is chosen

so that this mean is zero, the non-linear covariance is the same as

the linear. These equations should circumvent the need for Monte-Carlo

comparisons of these estimators for slightly non-linear problems. Fur­

thermore, it is hoped that they will provide intuition into the effects

of larger non-linearities on the state estimation problem.

Third, some examples are given in Chapter 4 which point out inter­

esting contrasts and similarities between this work and the results ob­

tained by Breakwell for the special case of slightly non-linear parameter

estimation. These examples show how the nature of a priori information,

as well as the value of initial covariances, can determine which estima­

tor has the largest bias for a given number of observations. A dynamic

example is also presented.

5



PRECEDING PAGE BLANK NOT FILMED

2. STATE ESTIMATION ALGORITHMS FOR SLIGHTLY NON-LINEAR SYSTEMS

Introduction

This chapter presents a mathematical description of the slightly

non-linear systems and associated data fitting algorithms with which

this dissertation is concerned. It begins in Section 2.1 by explicitly

defining the slightly non-linear dynamic system whose noisy output data

must be processed to obtain information about its state. It then goes

on to develop four computational algorithms for processing this data to

obtain the required information.

The processing schemes developed in Section 2.2 through 2.4, re­

spectively, are:

1. the classical least square fitting procedure (LS) resulting
in a two point boundary value problem (TPBVP) which must be
solved by iterative techniques

2. the extended Kalman filter (EK), derived seeking an approxi­
mate sequential estimator for the least square procedure

3. the approximate minimum-variance estimator (AM) which differs
from 2 above in that it tries to minimize an expected value
of the estimate, rather than just a function of given data

4. the iterated (IT) filter which is a refinement of the EK fil­
ter.

It should be noted that the development of these algorithms is somewhat

heuristic, and the assumptions used to derive them are not necessarily

identical with those used in the analysis of the following chapter.

2.1 Discrete System Description

A fairly general non-linear discrete system can be described by

the forward difference equation

(2.1 )

with output observation

7



(2.2 )

where the xk
is a sequence of n Xl matrices, qk is a sequence of

pX1 matrices, and the Yk
and vk

constitute a sequence of mx1

matrices. f
k

and ~ are at least three times differentiable matrix

*functions and the qk and vk
are zero mean processes with covariances:

(2.3 )

o

Furthermore, the initial conditions on (2.1) are assumed to be random

variables with a priori statistics

(2.4 )

The development in the sequel will be limited to estimating the xk
given the Yk in the cases where Taylor series expansions of (2.1) and

(2.2) can be performed. When these equations are'expanded in a Taylor

series about some nominal operating point

bles in terms of differences

6. ...
.6Xk = xk

- xk

6. ...
AYk = Yk - Yk

to obtain

we can define new varia-

(2.5 )

*E, as used here, is the expectation operator.
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~k+l

(2.6a)

and

+ terms with
3

(~) , ( 1\~)4 t
Uh e c.

dh [~
d

2
h

~~]+'" xx
~k = dXk

(x
k

) ~k+ vk2
dXk

(2.6b)

+ terms with
3 ~4 etc.~,

In view of the fact that qk and v
k

are unknown random variables

which, along with the ~ can never be determined exactly from the data

Yk' it is difficult to find the most general conditions which assure

'"that a close enough xk can ever be found to validate the use of these

expansions. One way to skirt this difficulty is to make the strong as­

sumption that the probability distributions associated with all the

random variables in the problem are bounded and have small enough vari­

ances to make the expansions tractable. The necessity of investigating

these assumptions for particular problems is not well emphasized in the

literature dealing with continuous non-linear dynamic systems where more

attention is focused on theoretical aspects of continuous stochastic

processes.

For future convenience it will be assumed that expansions of the

form (2.6) and (2.7) are valid so that by scaling and redefining state

variables the only system which need be considered is

t
xk+1 = <llkxk + [~:XkX:] + Gkqk

t An important consequence of this notation is that terms
cients of order 0k~ must be neglected along with ~
ing algebraic manipulations.

9
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*
Yk = ~Xk + [Ek :XkX~J + vk

(2.7b)

with the statistics (2.3) and (2.4), together with the assumption that

~k and E
k

are small so that squares and higher order products of

these terms are negligible.

2.2 Classical Least Square Fitting

The preceding section defined the source of the data which must be

processed. Of the four algorithms (the LS, EK, AM, and IT) to be con­

sidered for this task the least square will be presented first since

it is the most popular, especially in problems with few computational

constraints. In this approach, estimates of the x
k

and qk are made

'" '"by determining a sequence x
k

and qk which obey the constraint rela-

tions

k = 0,1, ••• , N - 1

(2.8)

and minimize the quadratic performance index

(2.9)

Since N is finite, this is essentially an algebraic maximization prob­

lem, solvable by using (2.8) to eliminate all the intermediate states

'"xi with i not equal to O. However, this leads to the difficulty

'"that all the qi must be found explicitly. This is avoided by adjoining

*Notational definitions;

[E:P]
u = [E:x]

uv

10
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(2.10 )

the constraints (2.8) to (2.9) via a sequence of Lagrange multipliers

~ so that an augmented performance index is written

N-1

cp = cp + 2 A~(cI>,~, + [cr;, :~,~~J + G1,Ql' - ~1'+1)
i=O 1 1 1 1 1 1

Differentiating (2.10) with respect to

to zero to find an extremum gives

and setting the result equal

Repeating this process for

k = 0,1, .•• , N - 1

gives:

(2.11 )

with

k = 1,2, ••• , N

(2.12 )

(2.13)

Differentiating (2.10) with respect to

condi tion

gives the initial boundary

o (2.14)

Equation (2.11) can be substituted into l2.8) to obtain the final equa-

tion:

(2.15 )

Equations (2.12) through (2.15) constitute a discrete two point

boundary value problem (TPBVP) whose solution constitutes the classical

least square smoothing estimate.
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2.3 The Kqlman Recursive Algorithms Generalized to Non-linear Systems
(Extended Kalman Filter)

Although the recursive filtering equations developed by Kalman

(Ref. 10) are only valid for linear systems, they can often be applied

to non-linear systems which have been linearized about some reference

path. The algorithm that will be considered here is obtained by con­

sidering a reference path which at any time is linearized about a cur­

rent best estimation of a state. The resultant equations look much

like the Kalman equations with linear transformations replaced by their

non-linear equivalents.

As a first step in obtaining this algorithm we will assume that a

good approximation to a portion of the least square problem represented

by Eqs. (2.8) and (2.9) has been found. This solution is expressed as
A A
x£/£ where the second index indicates that the x so defined is part

of the sequence satisfying Eqs. (2.8) minimizing the partial performance

index

(2.16 )

£ < N

A

If indeed x£/£ is a good approximation to a minimum, we know that the
A

derivative of (2.16) with respect to the components of x£/£ must be

zero. Hence a Taylor series expansion of ~£ about x£/£ can be writ­

ten as

(2.17)

t The asterisk is used to denote quantities associated with an optimum
solution.

12



where (p*)-l is presumed known,
I,

defined by

is a small excursion from

A

- X
I, / I,

(2.18)

and represents the estimate of obtained by minimizing

(2.19)

A

In order to obtain a simple forward solution for x as a func-
1,+1/1,+1

A

tion of xp,/p, and Yp,+l it is assumed that the change (2.18) obtained

by minimizing (2.19) rather that (2.16) is small so that the approxima­

tion (2.17) can be used in (2.19). Furthermore, it will also be assumed
A

that qp, will also be small. Taken with the above assumptions, this
A

implies that XI, +1/1, will be close to the predicted value defined by:

Hence, it follows that

(2.20 )

A 6. A

5Xp,+1/1,+1 = XI, +1/1,+1
A

- x
1,+1/1,

(2.21)

should also be small.t This last assumption permits us to expand the

second term on the right side of Eq. (2.19) about

Eq. (2.8), this expansion is performed by writing

Recalling

Yp,+1 - Yp,+1 - Yp,+l - (Hp,+1~p,+1/p, + [Ep,+1 :~.e+1/.e~J+1/.eJ)

- (H.e+ 1 + 2 [Ep,+1 :~p,+1/p,J) 5~.e+1/.e+1
(2.22 )

t The hypothesis here is that the E, 5, and q terms are of the same
order.

13



It might be argued that when (2.22) is substituted into (2.19), quadratic

'"terms in OX should also be included since (2.17) contains quad-
£+1/£+1

ratic terms. Further expansion of (2.22), however, involves only the

products of quadratics with E£+1' which, by hypothesis, are second

order terms and hence negligible in magnitude.

'" '"In order to relate oX£+1/£+1 in (2.22) to oX£/£+1 found in

(2.17), the defining relations (2.8), (2.18), (2.20) and (2.21) are

combined to give a new constraint relation

'"ox
£+1/£+1 -

(2.23 )

'"Before redefining the least square problem in terms of ox it is con-

venient to define two new variables:

and

H' = H + 2 rE :~ ]
£+1 £+1 L£+1 £+1/£

(2.24)

(2.25)

Using these definitions, the approximations (2.22) and (2.17) are

substituted into (2.19) to obtain the minimization problem that is now

summarized. Minimize

(2.26 )

1
+ 2

over '"ox
£/£+1

and '"ox
£+1/£+1

subject to

'"ox =
£+1/£+1

14
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But these equations simply represent one step of the more general prob­

lem solved in the appendices. The solution is simply

Aox
£+1/£+1

(2.28)

-1
(p* )-1 [;, (<1> p*<1>T + G Q GT ) + H,T R-1 H' (2.29)

£+1 £ £ £ £ £ £ £+1 £+1 £+1

The complete recursive algorithm can now be summarized. Equation

(2.28) will be combined directly with (2.21) to eliminate explicit com-

A p*Putation of the perturbation term. Hence, given x and the
£/£ £'th t

£+1 terms are computed from:

H' H + 2 rE :~ ]
£+1 £+1 L£+1 £+1/£

(2.30a)

(2.30b)

(2.30c)

(2 .30d)

t It should be noted that the state prediction equation (2.30a) for
and the predicted observation used in (2.30e) can be replaced by:

A

X =
£+1/£

and

for the more general problem discussed in Section 2.1. Furthermore, the
inverse required in Eq. (2.30d) can be eliminated by using the well known
relation

-1
p* = p* - p* H,T (H' p* H,T + R ) H' p*

£+1 £+1/£ £+1/£ £+1 £+1 £+1/£ £+1 £+1 £+1 £+1/£

15



(2 .30e)

(2.30f)

(2.30g)

This concludes the development of what is frequently referred to as the

extended Kalman filter.

2.4 An Approximate Minimum Variance Filter

It is well known (Refs. 13 and 14) that the minimum variance esti-

mates of a random variable such as x
k

based on data such as Yi is

the conditional mean of xk given the Yi (i = 1,2, .•. , N). In this

section an approximate recursive algorithm for computing the conditional

mean is derived. At several points in the derivation, certain variables

are arbitrarily assumed to have gaussian distributions. The analysis of

this algorithm in Chapter 3, however, does not rely on this assumption.

Thus, the algorithm has greater applicability than some of the interme­

diate approximations might, at first hand, indicate.

The derivation begins with the assumption that x
k

has been esti­

mated based on the data Yi' (i = 1,2, ••• , N). This estimate will be

"called x
k

and is presumed to be the conditional mean of x
k

written

symbolically as

(2.31)

In this equation p is the conditional multivariate probability density

of x
k

conditioned on the data y. The integral sign and differential

are symbolic and should be interpreted as

16



that is as an integral over all the components of x
k

. Furthermore, it

will also be assumed that the covariance of the error in this estimate

is also known. This covariance is defined by

(2.32 )

Given the above information we consider first the problem of finding

the minimum variance estimate of x
k

+
1

given only the data up to Yk.
A

This estimate is denoted by x
k

+1/
k

and the corresponding covariance

by Pk+1/k. By definition,

(2.33 )

By hypothesis, qk is a zero mean process which is uncorrelated

with data up to and including Yk. Furthermore, the expectation oper­

ator is linear, so we can write (2.33) as

(2.34)

The first expectation in (2.34) is known. The second expectation is

evaluated by noting that

(2.35 )

But, in (2.35),
A

X
k

is a known function of the data up to Y
k

so

17



(2.36)

Hence, the prediction Eq. (2.34) can be written

(2.37)

This prediction equation differs from the extended Kalman filter

version by a bias correction term. An expression for the covariance of

this prediction is derived in much the same way. Two additional varia­

bles are introduced to simplify the derivation. The first is the esti­

mation error defined by

The second is the prediction error

!:::. '"
xk +1/ k = xk +1 - xk +1/ k

(2.38)

(2.39)

When (2.7a) and (2.37) are substituted into (2.39), the resulting expres­

sion for the prediction error becomes

(2.40 )

It is advantageous to simplify the quadratic terms in by completing the

square to get

(2.41 )

18



In terms of these new variables, the covariance Pk+1/k is written

(2.42 )

When (2.40) is substituted into (2.42) and the result expanded many terms

arise which either contain terms in 0
2

which can be ignored, or which

are uncorrelated (have zero expectation) such as the product of x with

[0
k

:P
k

] and the cross terms containing qk' The only terms which at

first glance appear different from the linear case are one involving

cubics in x, x and '"x. If, however, the system (2.7a) and (2.7b) came

about by an expansion of a system like (2.1), these are in fact higher

order terms and must also be neglected. It is interesting to note that

Athans et. al. (Ref. 2) did not notice this in a similar development for

a continuous filter without state noise. Their simulation experiments,

however, justified the above statements since they found this term to

have negligible effect. Hence, (2.42) can be rewritten as

Pk+1/ k
(2.43 )

The next step is to determine

'"x
k+1/k+1

(2.44)

'"as a function of x
k

+
1

/
k

• That is, the estimate at step

updated to reflect the new data available at step k+1.

k+1 must be

In theory, the

expectation (2.44) can be determined if the joint conditional probability

density

(2.45 )

is known.

In practice, for all but linear problems, this density tends to be

difficult to compute. The first two central moments, however, can be

approximated by the same techniques used to obtain the prediction equations.
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This is easily done by first computing the conditional expectation of

the (n + m) dimensional column vector obtained by augmenting Yk+l to

the vector Thus we can write

(2.46)

A AT
E :x x
k+l k+l/k k+l/k +

The second moment is computed from

A(k+l) A ][

Xk +1/ k xk +1

Yk+l/k Yk+l

(2.47)

The last equation is conveniently computed in parts. The first part is

the nxn matrix which we can define as

(2 .48a)

The next part is an m X n matrix def ined by

- It P= -1(+1 k+1/k

20
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The last part to be determined is the m xm matrix

... ,

(2.48c)

where, as before, cubic terms in x are dropped consistent with the

original expansions. The covariance matrix A in Eq. (2.47) is now

written

=
[

Axx(k+1)

A(k+1)
A (k+1)

yx

AT (k+1)]yx

A (k+1)
yy

(2 .48d)

Although the mean and covariance of the distribution (2.45) are not,

in general, sufficient to completely specify the distribution, we circum­

vent this difficulty by pretending that it is gaussian. This might ap­

pear unduly restrictive but, in fact, the solution we will get for (2.44)

will be the same one that would be obtained by substituting a linear

least square criterion for the conditional mean criterion (e.g., Ref.

17, p. 46). Hence the distribution (2.45) is now written as

1
n+m

(2n)~IA(k+1)11/2

(2.49)

The conditional mean and covariance we desire can be directly written

down for this case using results given in reference (1). Hence
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(2.50 )

and

(2.51)

Aside from some algebraic manipulation to achieve more common forms for

the above equations, an approximate forward solution for finding a con­

ditional mean has been obtained.

The recursive equations for computing the approximate conditional

mean are now summarized. They are:

(2.52a)

(2.52b)

(2.52c)

(2 .52d)

H ~ + [E .~ ~T ] + [E .p ] (2 .52e)
£+1 £+1/£ £+1· £+1/£ £+1/£ £+1· £+1/£

"x
£+1/£+1

(2.52£)

This concludes the development of the approximate minimum variance equa-

tion.
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2.5 An Iterated Extended Kalman Filter

This filter is very similar to the Extended Kalman Filter. However,

in the derivation of that filter, a solution was obtained by linearizing

about a predicted value defined by Eq. (2.20). For this filter, the min­

imum to Eq. (2.19) is approximated by relinearizing the residual (2.22)

about the estimate found by an extended Kalman filter step and perform­

ing the minimization a second time. We begin the derivation of this

filter by defining the estimate obtained by using Eqs. (2.30a-g) as
..... (1)
x£+1/£+1' Corresponding to (2.17), a (hopefully) small excursion is

defined by

..... (1)
- x

£+1/£+1
(2.53 )

so that the expansion of the residual about

written as

..... (1)
x
£+1/£+1

is conveniently

( ~ ..... (1) J)- H + 2 E ·x
£+1 £+1· £+1/£+1

The constraint equation which relates

(2.54)

",(2) I::::. ;,,(2)
oX£/£+1 = x£/£+1

;"

- x
£/£

(2.55)

to is obtained by differencing
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with Eq. (2.30f) [using (2.30a) also] to get

The critical hypothesis in the last equation is that the iterated solu­

tion will give estimate changes of the same or higher order than the

non-linearities so that the term

"can be ignored. No explicit assumption about the size of q is made in

this iteration. The object now is to minimize

(2.58)

1 ( ... (1) H(2)5,,(2) )T -1 ( ,,(1) H(2\... (2) )
+ 2 Y£+l -Y£+l - £+1 x£+1/£+l R£+l Y£+l -Y£+l - £+1 x£+l/£+l

subject to the constraint (2.56). The solution is easily obtained using

the techniques of Appendix A. The solution can be put in several forms.

For convenience, the entire computational sequence is written below:

(2.59a)

(2 .59b)

p*
£ +1/£

(p*(l»)-l =
\ £+1

24
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(2 .59d)



"H x +
£+1 £+1/£ ~ " "T ]E 'x x

£+1' £+1/£ £+11£
(2 .5ge)

= H + 2 rE :~(l) ]
£+1 ~ £+1 £+1/£+1

= H ~(1) + [E :~(1) ~(l)T ]
£+1 £+1/£+1 £+1 £+1/£+1 £+1/£+1

(2.59£)

(2 .59g)

(2.59h)

(2.59i)

",(2 )
x

£+1/£+1

(2 ) (", (1 ) " )]- H x - x
£ +1 £ +1/£+1 £ +1/£

(2.59j)

This ends the development of the four types of data processing

schemes which will be analyzed in the following chapter.
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3 i APPROXIMATE EQUATIONS FOR THE MEAN AND COVARIANCE
OF DATA PROCESSING ALGORITHMS

Introduction

This chapter analyzes the filtering algorithms presented in Chapter

2. The object of the analysis is to find the bias and covariance of

each estimation scheme in terms of equations which can be easily com­

puted without using Monte-Carlo procedures. The equations to be de­

veloped here are of approximately the same complexity as the computations

required to compute covariances in a Kalman filtering algorithm applied

to a linear problem. Furthermore, the equations are all in terms of

quantities which are computed from a related linear problem and are thus

subject to some direct general interpretation.

The four sections deal with the least square, extended Kalman,

approximate minimum variance and iterated extended Kalman algorithms,

respectively.

3.1 Mean and Covariance of the Error in the Least Square Algorithm

This algorithm is represented by Eqs. (2.13) through (2.15). In

order to obtain an explicit solution for this (TPBVP), the equations

are first solved ignoring all the small terms containing E and E to

get a linear problem. The solution to this set of equations is then

substituted into the small terms of (2.12) through (2.15) which are then

regarded as driving terms.

The resulting linear smoothing problem is solved in Appendix A.

In the sequel, the linear smoothed solutions will simply be defined by
A

unsuperscripted quantities such as xk!N for a linear smoothed esti-

mate of x
k

given N data points and Pk/
N

for its covariance. The

least square estimate is denoted by a superscript (LS). With these con­

ventions, Eqs. (2.12) through (2.15) become:
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)..LS
'k-l

~S = 0

(3.la)

(3.lb)

(3.lc)

(3 .ld)

In these equations all the small terms are regarded as known terms such

as Yk or the deterministic driving term uk included in the solution

in Appendix A. In order to avoid the algebra inherent in solving these

equations directly, a correspondence is made between the data and driving

terms occurring in the linear problem and that in Eqs. (3.la) through

(3.ld). To do this we define two new variables:

(3.2)

(3.3)

In the linear relations of Appendix A data always occurs as a driving

term of the form

28



(3.4 )

Hence, in the solutions of Appendix A, wherever (3.4) appears, (3.3)

is substituted and wherever uk appears, (3.2) is used instead. The

correspondence is completed by making the boundary condition (3.1c)

look like Eq. (A.8) by defining a pseudo a priori mean

(3.5)

The solutions to equations (3.1a) through (3.1d) are now written

down in terms of the well known forward difference equations which must
ALB

be solved up to point N to get x
NIN

• It is important to note that

the intermediate points in the solution of these equations do not repre­

sent approximations to the least square solution at points k < N since

the driving terms are based on a zeroeth order approximation using N

data points. As a matter of convenience, however, the equations are

written in the same notation employed for the usual filtering solutions:

ALB ",LB
+ u'

x £+1/£ = <D£X£ £

T T
P

£+1/£ = <D£P£:D£ + G£Q£G£

-1 -1 T -1
P = P + H R H

£+1 £+1/£ £+1 £+1 £+1

ALB ",LB
+ P£+1 (y.e+1 _ HT R- 1 H xLB )

x£+1 = x£+1/£ £+1 £+1 £+1 £+11£

",LB [0; A JTXo = Xo - 2PO O:x
OIN

AO

(3.6a)

(3.6b)

(3.6c)

(3. 6d)

(3.6e)

In order to obtain equations for the mean and covariance of the least

square estimate, the Eqs. (3.6a) through (3.6e) will now be rewritten

in error equation form. A good deal of algebra will be avoided by using

well known probabilistic relations for the linear estimates occurring

29



in the drivi~g terms. The error notation is described in Eqs. (2.38)

and (2.39).

When Eq. (3.6a) is substituted into (3.6d) and the result sub­

tracted from the system Eq. (2.7a), we get:

[
T -1 ("'LS+ P y' - H R H <lJ x +

£+1 £+1 £+1 £+1 £+1 £ £
(3.7)

The last term in (3.7) is expanded further by recalling Eq. (3.3) and

the relation

[
T ]+ E :x x + v

£+1 £+1 £+1 £+1
(3.8)

When these terms are substituted into (3.7) and grouped appropriately

we obtain the result

= <lJ xLS
+ G q

£ £ £ £

T -1
- P£+1 H£+l R£+l [

(
A AT)]E . x x - x x

£+1· £+l/N £+l/N £+1 £+1

T

+ 2P£+l[&£+1: X£+1/N] A£+l + 2P£+1[E£+1: X£+1/N]T R~~l
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The mean of the least square algorithm error is determined by finding

the expected value of the difference Eq. (3.9) over the random variables

V
k

and qk the initial error. The expectation of the terms which do

not involve either E
k

or ~k is obvious. The expectation of the terms

containing the small non-linearities is found using the linear theory

developed in the Appendices. The first of these requires the evaluation

of

(3.10)

where the last two terms on the right side of (3.10) have zero expecta­

tion since Appendix B shows that the linear estimate and its error are

uncorrelated. Hence, we see immediately that

(3.11 )

The term containing the adjoint A£+l will consist entirely of

linear combinations of products occurring in the matrix representing

the outer product between X£+l/N and A£+l· However, using the relation

(A.45), we can show that the expected value of the outer product matrix

is zero. In fact, adding and subtracting x£ to (A.45) i~mediately

gives

-T -1 (~ ~)<D P x -x
£+1 £+1 £+l/N £+1

and we have shown in Appendix B the well known fact that

(3.12)

o (3.13a)

and the lesser known fact that
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so the result is demonstrated.

(3.13b)

The next term of interest involves linear combinations of terms

occuring in the outer product

E{X ;(I' } = 0
,E+1/N £+1/N

and also a term

(3.14a)

which will contain linear combinations of the quantities occuring in

the outer product between

it is shown that

'"
x£+1/N

and In Appendix B, however,

With the use of (3.14b), the term (3.14a) becomes

~ T T -1 )]*2P E : P R
£+1 £+1 ( £+1/~£+1 £+1

(3.14b)

(3.14c)

The remaining term is analogous to (3.10). Hence, the desired ex­

pectation can immediately be written:

*In explicit summation notation this term is written as

p
cxA

(n+1 ) E(,E+1) P (n+1/N) .(,E+1) R- 1 (,E+1)
f-' ~ )'~o )'p ~ H~p ~o

32



(3.15)

where the error transition matrix is defined by

(I (3.16)

Providing Xo represents the true a priori mean of x o' the algorithm

(3.15) is started with the initial condition

o . (3.17)

~LS

In order to obtain an estimate of the covariance of x
N

without

being ensnared in an intolerable amount of algebra the solution to (3.9)

is written explicitly in summation notation, the initial condition (3.6e)

substituted into the result, and the first order terms grouped to get

~ ( ) ~(i, T A AT ]~. I - p. S. .:x.x. - x. x
N/1+1 1+1 1+1 1 1 1 1/N i/N

N-1.

+ 2 I 1>N/i+1 P i+1 [E i +1 :xi +1 / NJTR~~l (H i +1 i i+1/N + v i+1)
i=O

(3.18)
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"LSThe covariance of the error in x
N

based on an ensemble of cases having

various initial conditions Xo and various noise sequences qk and Pk

will, in general, differ from a conditional covariance based on a partic­

ular sequence of data. In the linear case, these covariances are the

same. The ensemble covariance is defined by

(3.19a)

(3 .19b)

The first term on the right side of (3.19b) is found by squaring (3.18)

and taking an expectation. The second term will be entirely higher

order and so will be ignored. At this point some additional assumptions

are made. They are: a) the random variable Xo is drawn from a dis­

tribution which is symmetric about the a priori mean Xo and is entirely

independent of the qk and V
k

; and b) the sequences qk v
k

are drawn

from independent zero mean symmetric distributions. From the results

given in Appendix A, it is clear that such terms as x j/N and x 0° can

be written as linear combinations of x o' and the qk vk sequences.

Together with assumptions a) and b) above, this leads to the conclusion

that, when (3.18) is squared, all cubic terms in x, q and v will

yield zero expectation. Terms involving products of ~ and E are by

hypothesis negligible. Furthermore, the terms in Eq. (3.18) involving

the difference of the squares of the state and its estimate are replaced

by the same relation used in (3.10) so that

where

~ P + A + AT
~ N N N

34

(3.20)



~ ~ A JT -1 (~ )~ l¢ P E:x R H x + x·
N/i+1 i+1 i+1 i+1/N i+1 i+1 i+1 V i +1 Nj

(3.21)

The term
A

x
i/N

in (3.21) can be written as

- x
i/N

(3.22)

But x
i

/
N

is simply a linear combination of Xo and the qk and v
k

'

and second order terms so that by the hypothesis above it will give no

contribution to the expectations in (3.21). By similar reasoning, x.
1

can be written as a linear combination of ¢i/OxO plus terms with qk

and second order effects. Xo can, in turn be written as Xo + Xo from
A

which we see immediately that all the x
i

/
N

terms in (3.22) can be re-

placed by ¢N/ixO which is deterministic in character. Hence, the ex­

pectations in (3.22) need only be taken over the remaining products of

wo errors in each term.

From the results in Appendix B,

and

(3.23)

~T

-H P ¢
i+1 i+1 N/i+1

(3.24)

so that the first and third terms in (3.21) have zero expectation. The

remaining terms are written as
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N-1

2 I ¢N/i+1 (I - Pi+1 Si+1) [Gii : ¢li/OxO] P i~/i
i=O

+ 2

N-1

I
i=O

~ T ~ -1 ~T¢ . p. H. E. : iIJ. x p. ¢ .
N/1+1 1+1 1+1 1+1 1+1/0 OJ 1+1 N/1+1

(3.25)

Equations (3.15), (3.20) and (3.25) complete the derivations of approxi-

mat ions for the approximate mean and covariance of the errors in a least

square estimation.

3.2 Mean and Covariance of the Error in the Extended Kalman Filter (EK)

The first step in analyzing this algorithm is to use Eqs. (2.30a)

through (2.30g) to obtain the state error equation:

(3.26)

* AEK
The term P£+1 is also a function of the x quantity and is updated

according to (2.30c) and the equation

P* p* p* H,T (H' p* H,T + R )-1 H, p*
£+1 = £+1/£ - £+1/£ £+1 £+1 £+1/£ £+1 £+1 ~+1 £+1

(3.27)

The last equation can be put in a form where higher order terms can be

separated from lower order ones by expanding the matrix inverse term.
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To simplify the algebra, a new variable M£+1 is defined by

*H P H + R
£+1 £+1 £+1 £+1

(3.28a)

M = H P H + R
£+1 £+1 £+1 £+1 £+1

The matrix inverse is now written as

(3.28b)

(' * T )-1H' P H' + R
£+1 £+1/£ £+1 £+1

*-1 ( [ "EK] * T *-1M I + 2 E :x 'P H M
£+1 £+1 £+1/£ £+1/£ £+1 £+1

)

-1
* "EK T *-1+ 2H P E:x M + HOT

£+1 £+1/£ ~ £+1 £+1/£] £+1

(3.29)

When (3.29) is substituted in (3.27) and only first order terms retained

it can be seen that

* * T ~1 *
P -P H M H P

£+1/£ £+1/£ £+1 £+1 £+1 £+1/£

* T *-1
+ 2P£+1/£H£+1M£+1

*-1 * *
• M£+1 H£+1 P£+1/£ - 2P£+1/£

(3.30)

Equation (3.30) and (3.26) show that the non-linear equations for the

extended Kalman filter look like the linear equations with higher order

terms added. An approximate solution is then obtained by getting a
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zeroeth order solution which ignores all the non-linearities and sub­

stituting this linear recursive solution back into the small terms of

(3.26) and (3.30).

terms becomes

When this is done, the update equations for the *P

* * T *-1 *
= P£+l/£ - P£+l/£H£+lM£+lH£+lP£+l/£ + f£+l

where, after some manipulation,

r = -2P H
T

M-
1

[E .x Jp
£+1 £+1/£ £+1 £+1 £+1· £+1/£ £+1

(3.31a)

(3.31b)

[

A JT-2P E ·x
£+1 £+1· £+1/£

-1
M H P

£+1 £+1 £+1/£
(3.31c)

Equations (3.31a) through (3.31c) can be written in error equation form

by subtracting them from the linear update equations for the covariance

to get

and

EK
6P£+1/£ = (3.32a)

EK 2- r + terms of order (6P )
£+1

EK~

= 11>£+1/£6P£ 'P£+1/£ - 1£+1

38
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with

o

The solution to (3.32b) is written in summation form as

(3.32c)

EK
W£+l

£+1

I
i=l

.....
cP£+l/i f i cP£+l/i

(3.33)

The solution to (3.26) is now written as

AAT])- x x
£ £

T -1 ~ e ( T- P H R v +E : x x
£+1 £+1 £+1 £+1 £+1 £+1 £+1

consists of a summation of terms involving the linear filtered
A

up to x£+l/£' we know it will be orthogonal to

The other terms follow from Appendix B. Hence,

[

A JT -1 ( .....)- 2P E:x R v + H x
£+1 £+1 £+1/£ £+1 £+1 £+1 £+1/£

EK T -1 ( .....)- 6P H R v + H x
£+1 £+1 £+1 £+1 £+1 £+1/£

We now take the expectation of both sides of (3.34).

W EK
£+1

estimates

and

(3.34)

Since the term

{
.....EK}

E x£+l

T -1 ~ ]- P H R E :P
£+1 £+1 £+1 £+1 £+1/£

(3.35)

The covariance of the EK filter is computed much like the least square

filter and turns out to be exactly the same as that given in Eqs. (3.20)

and (3.25) for that case.
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3.3 Mean and Covariance of the Error in the Approximate Minimum
Variance Filter (AM)

As with the previous two algorithms, an error equation for this

filter is found by differencing Eq. (2.52) with the state equation to

get

(3.36)

Since

with

*P£+l obeys the same update equation as the extended Kalman filter

xEK replaced by xAM
we can immediately write down the approxi-

mate solutions to the above equations by first ignoring non-linearities

and then resolving the equations with linear solutions substituted into

the terms which are small. When this is done, the approximate solution

to (3.36) becomes

T -1
- P H R

£+1 £+1 £+1 ( [
. T A AT Jv + E :x x - x x

£+1 £+1 £+1 £+1 £+1/£ £+1/£

r A JT- 2P E :x
£+1 £+1 £+1/£ ( ,..,)v + H x

£+1 £+1 £+1/£
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Hence, we see that

= 0

{"'AM}E x
N

= 0

(3.37b)

(3.38)

When the covariance computation is carried out, it is again found to be

the same as that for the least square and extended Kalman algorithms.

3.4 Mean and Covariance of the Error in the Iterated Extended
Kalman Filter (IT)

In order to obtain the error equations for the iterated filter it

is first necessary to write Eqs. (2.59a-j) in a single step form. When

this is done and second order terms discarded it is immediately seen

that the iterative step produces only changes of order E
,,(1)

step. Hence, in all the small terms involving x or

from the first

£(2) it is

irrelevant which one is used. This reasoning leads to the analytically

useful single step form:

(3.39a)

(3.39b)

(3. 39c)

(3.39d)
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(3.3ge)

In (3.39c) the P
k
+

1
appears since all the P type terms can be written

as the linear P plus small corrections which produce only higher order

effects in the relevant term. The error equation for the iterated filter

can now be written as

ITT -1 {
R v + H~+1 k+1 k+1 k+1

(3.40)

The term
EK

[).pk+1'

[).pIT can be computed from the same equations used to compute
k+1

namely (3.32b-c), with the driving term r being replaced by

T -1 r A. ]-2P H E'x
k+1/k k+1~+1 k+1' k+1/k+1

[

A. JT -1-2P E 'x P
k+1 k+1' k+1/k+1 ~+1~+1 k+1/k

(3.41)

As before, (3.40) is solved by replacing the small terms with their linear

equivalents and using the properties of these random variables to obtain
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a forward difference equation for the iterated filter bias:

E{~IT }
xk+1

{ [ T ( T -1)] T -1 [ J}- P 2 E : P H R + H R E :P
k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1

(3.42)

The covariance of this filter will again be the same as that of the

other three algorithms.
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4. EXAMPLES

Intrcxluction

In order to gain some insight into the use of the bias expressions

given in the last chapter, some simple examples are presented. The

first deals with the general problem of parameter estimation and com­

pares the results obtained by Breakwell (Ref. 5) with those in Chapter

3. In the second example the bias associated with applying the least

square, extended Kalman, or iterated algorithm to a simple one dimen­

sional parameter estimation scheme is carried out numerically.

The third and fourth examples consider a simple dynamic plant, with

observation and dynamic non-linearities, respectively. These bias ef­

fects are considered separately since they simply superpose when both

are present. It should be emphasized that the biases associated with

any particular problem are very much a function of such parameters as

initial covariances. Hence, it is dangerous to draw generalizations

from the numerical data presented here for other problems.

4.1 Bias in Parameter Estimation with Slight Non-Linearity

The simplest type of system for which the equations in Chapter 3

are relevant consist of a set of constants which are elements of a vec­

tor

x

x
n

(4.1)

whose values are to be estimated from the (slightly non-linear) observa­

tions
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k = 1,2, .•• , N (4.2 )

where E
k

is small. In this case Eqs. (3.15), (3.35) and (3.42) which

give the estimation biases for the LS, EK or IT algorithms simplify con­

siderably. In fact the transition matrix which occurs in the error tran­

sition matrix, defined in (3.16), becomes the identity matrix. Further­

more, only one index in the covariance is necessary so

With these relationships we further simplify by writing

(4.3 )

(
T -1 )I-P H R H

£+1 £+1 £+1 £+1
= P (p-1 _ H R-1 H ) =

£+1 .Hl £+1 £+1 £+1
-1

P P
£+1 £

(4.4)

When these relations are used in the bias equations mentioned above with
-1

each equation multiplied through by P£+l' they become

-1 {""'LS}P E x
£+1 £+1

-1 {""'EK}P E x
£+1 £+1

(4.5b)

-1 {""'IT}P E x
£+1 £+1

T -1 ~ ]- H R E :P
£+1 £+1 £+1 £+1

(4. 5c )

with zero initial conditions on the biases. To compare this with the

results obtained by Breakwell (Ref. 5), the equations are solved and

written as

-P
N

N

2
j=l
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-P
N

N

I
j=l

(4.6b)

N

-P \~
N .......

j=l
(4.6c)

Now Breakwell has derived bias equations for the case where the Yj are

scalars (so that R. is a scalar) and R. is unity. It turns out that
J J

Eqs. (4.6a-c) do not bear a one to one correspondence with Breakwell's.

The difference, however, is entirely attributable to differences in as-

sumptions about the meaning of the a priori covariance P. In the de-

velopment of Eqs. (4.6a,b,c) it was assumed that the true initial state

Xo was a sample drawn from a group having a probability distribution

with a known mean Xo and covariance PO. This mayor may not be a

good mathematical model for a particular situation. It does enjoy the

advantage, however, of giving the information necessary to use a Bayesian

approach to utilizing a priori information to start the estimation schemes.

On the other hand, Breakwell started with the interesting assumption

that Xo is a "pseudo-measurement" of Xo contaminated by zero mean

noise having covariance PO. Thus the error Xo is interpreted as be­

ing centered around the unknown mean xo' whereas in the Bayesian ap­

proach it is centered around the known mean x
O

• Figure 1 schematizes

the assumptions made in each of the approaches.

An alternate way of looking at the difference between these two ap­

proaches is to say that Breakwell computes the bias conditioned on know­

ing what the true value of the a priori state is. That is, he computes

the condittional mean

whereas the means computed in Chapter 3 are based on
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(a)

Bayesian: Xo known and interpreted as
mean of random variable Xo

(b)

Pseudo-measurement: a sample Xo is known
and is assumed distributed with
zero mean about true Xo

Fig. 1. DIFFERENCE BETWEEN PSEUDO-MEASUREMENT
AND BAYESIAN APPROACH TO A PRIORI KNOWLEDGE.
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When Breakwell's results are generalized and separated to obtain a.
form comparable to Eqs. (4.6a,b, and c) they look the same except for

an additional additive term given by

N

~
j=l

(4.7)

This term, when added to each of Eqs. (4.6a,b,c) does not change the

basic conclusions reached regarding the long term behavior of the biases

but it does change the sign and possible conclusions regarding the bias

in the case of little data.

With reference to Eqs. (4.6a,b,c) we can make many of the comments

made by Breakwell. For example, although the least square weights all

the non-linearities with P
N

, and the iterated weights them by P
j

(both of which are presumably smaller than p. which occurs in the
J-1

extended Kalman filter) there are three times as many terms in the for-

mer cases, so that the last may actually be the best. A simple example

which points this out is investigated in the next section.

4.2 A Numerical Example of Scalar Parameter Estimation Bias with Small
Non-Lineari ty

The simplest example which can be considered is the problem of es­

timating a scalar constant c using observations

2
c + EC + V.

1
i = 1,2, ••• , N (4.8)

where is a zero mean white noise process with covariance l' and c

has a priori covariance PO. The inverse covariance update equation

gives

49

1

+
k

l'

(4.9)



Hence, making the proper substitutions in Eqs. (4.6a,b, and c), all of

whose terms are scalars for this example, the biases become simply:

N N

E{~~S}
3r 2 6. • 3 2 1

(4.10a)= E = C
N

(p: + NJ j=l j=l
CX + N

N N

E{~~K}
r )' E ~c I 1

(4.10b)=

(~ N) L.. -1) N cx+ j - 1
+

j=l (~ + j
j=l

PO

N N

E{~~T} 3r I E
6. I 1

(4 .1Oc)= jfeN· 3 ---

(~ + N) j4 (P: j=l
cx + j

+

The relative sizes of the biases have now been reduced to a function of

two parameters, the ratio r/PO defined here to be CX, and the number

of observations N. The LS and IT bias have an unfavorable factor of

three (3) as compared to the EK filter, but the individual denominator

terms in the EK filter are larger, reflecting the fact that a predicted

covariance is used in each term.

For large N, i.e., N» CX, the term which gives the relative

bias of the LS algorithm is approximated by

1--- =
CX + N

3N
a + N -

3 (4.11)

The pertinent term in the iterated filter can be evaluated by not­

ing that the summation looks much like a coarse partition used to eval­

uate the Riemann integral

f N+l 1
---dx

1 CX + x
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Simple geometric considerations then lead us to write

N

.en (N + 1 + 0:) + .en (1 + 0:) < I
j=1

Hence, for

1 1
-- <.en (N + rv) - On (l+rv) +-­0: + j - ~ ~ ~ 0: + 1

N » 1 + 0:

1
-- _ 3 .en (N)
0: + j

(4.12)

The EK summation term can be similarly evaluated by writing

N

2
j=1

1
0: + j - 1

1

0:

1
---+
0: + N

N

I
j=1

1
---~

0: + j

1
- + .e n (N)
0:

(4.13 )

N » 1 + 0:

From Eqs. (4.11-4.13) we see that for large enough N, the LS bias

will be the smallest. When .en N »1/0:, the EK bias will be about one­

third of the iterated bias so that iteration would probably not be as

advantageous as using the simpler EK. However, the term 1/0: is likely

to be large, reflecting a large a priori uncertainty relative to the

weighting put on data. For example, if PO is taken as ten times as

l~rge as r, 1/0: takes the value ten (10). Hence, N must take on

the value 10,000 before .en (N) even reaches a magnitude comparable to

1/0:. For any particular problem the point where the EK bias becomes

less than the iterated bias is likely to be more interesting than the

limiting case. For small 0: this will occur when

.en N
1

- 20: (4.14)
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For moderate values of N and a, it is entirely possible that

the coefficient 3 in Eqs. (4.10a-c) is a dominating influence so that

the simple EK algorithm would have the lowest biases.

Figure 2* depicts the bias histories for E = .1, an initial co­

variance Po chosen as .1, and three noise variance cases, with respec­

tive values of .009, .01, .011. This gives fairly small values of a

(.09, .1 and .11 respectively). In these cases the least square bias

is always the smallest. The iterative bias is less than the extended

Kalman initially, but after a while, the EK filter actually has the

smaller bias. The crossover actually occurs at about 170, 90 and 65

points, respectively whereas the rough approximation given by (4.14)

would have placed the crossovers at 245, 150 and 90 points.

The interesting case where the EK filter is actually the least

biased initially is plotted in Fig. 3. The case depicted here repre-

sents a measurement noise covariance of .1. That is, the a priori

covariance contains about the same information as a data point so that

a = 1.0. For this a, the iterated filter always has a larger bias

than the EK. The least square estimator always becomes the least biased

after a sufficient number of data points are considered.

4.3 A Dynamic Example with Small Observation Non-Linearity

A simple two state dynamic system with small observation non-lin­

earity can be written in terms of the two scalar difference equations

(4.15a)

*Since logarithmic scales were most convenient, the negative value of
the biases is plotted in Fig. 2.
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54



and an observation equation

(4.15b)

Such a mathematical model might be used to describe a physical system

designed to measure the constant c where the transducer is a first

order plant with unity steady state gain. The white, zero mean noise

qk (having covariance Q) is a perturbation at the input of the trans­

ducer, whereas the v
k

is a white noise with covariance R corrupting

the output. If we ignored the non-linearity E and transient effects,

this would be a problem in extracting the mean c from a series of data

points containing both colored noise due to qk and white noise due to

vk •

The covariances associated with processing the data Yk when <:=0

(the linear problem) are independent of the data Yk and will be defined

by

(4.16a)

(4.16b)

(4.16c)

The index k has been dropped in (4.16b) since c is a constant. One

index will also be dropped when both take on the same value. With these

definitions the bias Eqs. (3.15), (3.35) and (3.42) reduce to the three

pairs of coupled difference equations summarized in Table 1. These com-

putations were carried out numerically for the case where ~ 0.95,

p (0) = 0.0, p (0) = .02 and R was
cz cc

*Some cases were also run with Pcc(O) = 0.2. These gave results very
similar to those obtained using the smaller value.
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Table 1

BIAS EQUATIONS FOR SMALL OBSERVATIqN NON-LINEARITIES

Least Square Bias

Extended Kalman Bias

-R
E

P (k + l)p (k + 11k)
zz zz

Iterated Bias

E{"'IT } = cP (k) E{~kIT} + cP (k) E{C
e
IT

} - 3E P (k + l)p (k + 1)
zk+1 zz ze R zz zz

where

£::, ( P (k+1») '" £::, (1 P (k+1»)
cP (k) 1 zz zz

- ep ep (k) - (l-ep)
zz R ze R

'" £::,
p (k+1)

'"
p (k+1)

(k)
ez

(k)
ez

epez = ep epee = 1 - (1 - ep)
R R
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chosen as .• 04. Figure 4 depicts the bias in the estimation of c for

three cases: no state noise (Q = 0), Q = .0001 and Q = .001. With

only a few data points, the least square estimator is always the least

biased, the iterated is second, and the extended Kalman, the worst.

This is attributable to the fact that the ~ priori covariance is weighted

out the fastest by the LS estimator, and the slowest by the EK estimator.

However, as the dependence on initial covariances dies out, the bias

seems to go through a region where the factor of three in the IT and LS

algorithms makes their bias larger than that of the EK. This is in con­

tradistinction to the static example where the LS estimate always has

the smallest bias.

For the case where Q = 0, depicted in 4a, some special calculations

were carried out to confirm the fact that eventually the LS bias would

become smaller than the EK. This happened at between 11000 and 12000

data points.

The effect of state noise seems twofold. Initially it reduces the

bias over the non-state noise case by damping out the effect of ~ priori

information. When a large number of data points are used however, it

has the opposite effect, since all the non-linearities become weighted

by larger values reflecting the fact that the state noise forces in­

creased estimate uncertainties. It appears that the region where the

EK estimate is better than the LS estimate is likely to be much larger

for increasing state noise covariance.

4.4 A Dynamic Example with Small Dynamic Non-Linearity

This section, like the last, considers a simple two state model,

but with a dynamic rather than observational non-linearity. The dynamic

equations are

(4.17a)
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Fig. 4. BIAS HISTORIES FOR OBSERVATIONAL NON-LINEARITY IN DYNAMIC PROBLEM.
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The observation equation is simply

(4.17b)

The relevant bias equations are summarized in Table 2. The parameters

are identical with those given in Section 4.3. E is chosen as .1. In

the case of dynamic non-linearities, the EK and IT biases are identical.

In Fig. 5 these are compared with the LS bias, which, for any given value

of state noise, is always the smallest.
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Table 2

BIAS EQUATIONS FOR SMALL DYNAMIC NON-LINEARITIES

Least Square Bias

{~LS } E{Z~S}
~

Et
LS

}
(: P (k+1»)1 zz

E zk+1 epzz (k) + epzc (k) ck + E - p (kiN)
R zz

{~LS }
~ rLS

}

~

Ef~S} ~E ck+1 epcz (k) E zk + epcc (k) E p (k+1) p (kiN)cz zz

Extended Kalman and Iterated Bias

{~IT } "" E{""IT}
.....

E{..... IT} E~
P (k+1»)_ zz p (k)

E zk+1 epzz (k) zk + epzc (k) ck + R zz

{~IT } tIT}
.....

E{~~T} _
Pcz (k+1).....

E zk+1 = epcz (k) E zk + epcc (k) E R
P (k)zz

!:::. (1 -P (k+1)) ..... ~ (1 P (k+1))zz zz
epzz (k) R ep epzc (k)

R
(1 - ep)

!:::. Pcz
(k+1) ..... !:::. P (k+1)

"" cz
epcz (k) ep ep (k) = 1 - R (1 - ep)

R cc
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The examples in Chapter 4 point out some interesting characteris­

tics regarding estimation biases associated with using an extended Kalman

(EK), iterated Kalman (IT), or least square (LS) algorithm to filter data

from slightly non-linear dynamic systems. Several of these characteris­

tics are in good agreement with results obtained by Breakwell for the

parameter estimation problem. For example, for small amounts of data,

the LS algorithm has the smallest bias, the EK filter has the largest

bias, while the IT filter bias has an intermediate value. Another phe­

nomenon which parallels Breakwell's observations is the tendency of the

IT filter to give the largest bias after a large number of data points

have been processed, even though state noise may be present. Very large

values of state noise may give different results.

The dynamic problem possesses the interesting property that the LS

bias due to observational nonlinearities can actually be larger than the

EK bias after a large number of data points. With no state noise the

LS will eventually be the least biased but this may require a vast number

of data points. Numerical results indicate that, with state noise, the

LS bias may never become as small as the EK bias.

In general, the bias equations derived in Chapter 5 show that for

small dynamic non-linearities (as opposed to observational non-linearities)

the EK and IT filters have the same bias. This bias will generally be

larger than the LS bias.

Finally, a filter is developed that removes the biases inherent in

the other algorithms. By carrying second order terms, both the effects

of small dynamic and observational non-linearities on the estimate bias

are removed.

5.2 Recommendations

The hypothesis required to obtain the convenient computational ex­

pressions derived in Chapter 3, involved fairly strong assumptions about

the size of the variances of the random variables involved in the problem.
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The net effect of these assumptions is to limit the size of the biases

of the state estimates to a fraction of the covariance of the state esti­

mates. This leaves an important question to be pursued.

The question concerns realistic problems with blatantly moderate

size non-linearities. Although it is necessary to assume small non­

linearities to get the fairly tractable results of Chapter 3, one hopes

that relative characteristics of the different filters displayed in the

examples in Chapter 4 carryover larger non-linearities. It would be

interesting to take a particular problem and determine if this is true.

This could be done using Monte-Carlo techniques if no analytic solution

presented itself.

A second question concerns the impact of coordinate transformations

on the algorithms. It would be interesting to determine the possible

benefits of using coordinates where the non-linearities become either

all dynamic or all observational, since the two have different effects.

This may lead to a better iterative algorithm.
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APPENDIX A

This section shows that the linear two point boundary value in

Chapter 3 is the solution to a least-square problem associated with

linear systems, and then derives the recursive solutions used in find­

ing approximations to the slightly non-linear problem.

The equations are obtained by minimizing the quadratic performance

criterion

'" JT -1 [ '" J- H.x(i/N) R. y. - H.x(i/N)
111 1

(A. 1 )

1
+ ­2

N-1

L
i=O

'" '"with respect to the x and q subject to the constraint

~(i + liN) (A.2 )

This problem is solved by adjoining the constraints (A.2) to the per­

formance criteria with a sequence of Lagrange multipliers ), (i/N) to

obtain

N-1

cp = cP + L AT (i/N) [<D i i (i/N )
i=O

+ G.q. + u. - ~(i + liN)]
111

(A.3 )

With a little rearrangement, the last equation can be rewritten as
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N-1

+ ~1 {~ [Yi - Hi;; (i/Nl] T R~lri - Hi;;(i/Nl] + ~ q~Q~lqi

(A .4)

"Differentiating with respect to qj and setting the result to zero

gives

qJo = -Q .G~A U/N)
J J

j = O,1,--,N-1 (A.5 )

Differentiating with respect to X(j/N) (j 1, --,N -1)

AU - l/N) (A.6 )

Differentiating with respect to x(N/N) gives

(A.7 )

But equivalently, we can assume Eq. (A.6) holds for (j = 1,--N) with

A(N/N) taken as zero. Differentiation with respect to ~(O/N) gives

a final necessary relation:
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o (A. 8)

All the equations for solving the least square problem can now be summa­

rized. Equation (A.5) is substituted into (A.2) to get one Nth order

difference equation while (A.6) gives another. Equations (A.7) (with

the accompanying remark) and (A.8) give 2N boundary conditions. In

particular, we must solve

"x (i + liN) ¢.~(i/N) + u
1
. - G.Q.G~A(i/N)

111 1
(A.9)

A(i - liN) i=1,2,--,N (A .10)

with

A(N/N) = 0 (A.11 )

"X o - x(O/N) (A .12)

The recursive solutions to Eqs. (A.9) through (A.12) can be found

using sweep methods suggested by Bryson (Ref. 7). This is done by

breaking the solutions of (A.9) and (A.10) into homogeneous (y. = 0)
1

and particular solutions. To do this, we first rewrite Eq. (A.10) in

forward form:

A(i + liN) -T ( T -1 T)¢. 1 I + H. 1R . 1H. 1G. Q. G.
1+ 1+ 1+ 1+ 1 1 1

A(i/N)

-T T -1 { [ '" . J}+ ¢. 1H. 1R . 1 y. 1 - H. 1 ¢.x(l/N) + U.
1+ 1+ 1+ 1+ 1+ 1 1

(A .13)

'"and consider a set of particular solutions x (i) and A (i) satisfy-
p p

ing (A.9) and (A.13) with initial conditions.
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(A .14)

A (0) = 0
p

The solutions are then written as the sum of the particular solutions

and the homogeneous solutions ~h(i/N) and Ah(i/N) so that

"-
x(i/N)

(A .15)

When (A.14) is substituted into (A.15) and the result used in the bound-

ary condition (A.12), the relation between the initial conditions on

the homogeneous solutions becomes

Equation (A.16) shows that the whole 2n X 2n transition matrix associ­

ated with (A.14) and (A.16) need not be computed to find all pertinent

homogeneous solutions. Instead, we can consider only those columns cor­

responding to

with

A h =

1

o

o
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1

o
o

1

o
, ...

so we need only solve for the reduced 2n X n transition matrix solving

(A.14) and (A.16) which is defined by

[
X(k~

A(k)J
k = O,l,--,N (A .17)

and satisfies the initial condition:

With these relations the homogeneous solution can be written as

In particular, the terminal values are
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The terminal condition (A.ll) requires that

or

"h(N/N) = -" (N)p
(A .21)

Relations (A.20) and (A.21) can be combined to get

'"Xh(N/N)
-1= -X(N) A (N)" (N)

p
(A .22)

so that the desired solution to the TPBVP is

'" -1= x (N) - X(N) A (N)" (N)p p (A .23)

where all the terms in Eq. (A.23) are computed in a forward computa­

tional pass. We can note from the symmetry of this equation that

X( . ) A-I ( .) " (.)J J p J (A .24)

is a forward formula which satisfies the TPBVP where summations involve

only j pieces of data.

The well known recursive solutions for (A.23) can be obtained by

defining

p. 1
J+

-1 -T= -X(j + 1) A (j + 1) ¢j+l (A .25)

From the homogeneous versions of (A.9) and (A.13) we deduce
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(A. 26)

= [-¢jX(j)A-
1

(j) + GjQjG~] • [(I + Sj+lGjQjG~) - Sj+1¢jX(j)A-
1

(j)]

= [¢.P.¢: + G.Q.G:][I + S. l(¢'P,¢: + G.Q.G:)]-l
J J J J .1 J J+ .1 J J J .1 J

For convenience we can introduce the term

so that

P
j+l

!':::. T T
P

J
'+l /

J
' = ¢.p.¢. + G.Q.G .

.1 .1 J .1 J J

-1
p. 1/' (I + S. I P , 1/')J+ J J+ J+ J

-1

p. 1/' - p. l/· H: l(H. I P , l/· H: 1 + R. 1) H. 1P , 1/'J+ .1 J+ J .1+ J+ J+ .1 .1+ .1+ .1+ .1+ J

(A .27)

(A. 28)

Equation (A.25) is used in (A.24) to obtain

"x (j + 1/j + 1) ~ (j + 1) + p. 1¢: 1A (j + 1)
P .1+ .1+ P

(A .29)

But in (A.29) we can substitute for the particular solutions from (A.9)

and (A.13) to get

"x (j + l/j + 1)

T -T ( T)+ p. 1¢' 1¢' 1 1 - S. I G .Q.G , A (j)
.1+ .1+ .1+ .1+ J .1 .1 P

T -T T -1 ( [
+ p. ¢ . ¢ . H. R. ~Y. - H, 1 ¢ ,x (j) +

.1+1 .1+1 .1+1 .1+1 J+1~ .1+1 .1+ .1 P
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When Eqs. (A.27) and (A.28) are used in (A.30) and the result regrouped,

it can be seen that

A

x(j + 1/j + 1) ¢.[.~ (j) + P.¢~A (j)J + u.
J P J J P J

T -1 { -1 ( ["+ p. 1H . 1R . 1 y. 1 - H. 1 ¢. xU)J+ J+ J+ J+ J+ J P

(A .31)

+ Pj.~ApW] + U j )}

"¢ .x (j/ j) + u.
J J

+ p. 1H~ 1R~11{Y' 1 - H. 1r¢.~U/j) + u.J}J+ J+ J+ J+ J+ LJ J

In the sequel we define

"xU + 1/j) = ""¢ .x(j/j)
J

+ u.
J

(A .32)

The forward solution of Eqs. (A.27), (A.28), (A.31) and (A.32) with ini-

tial conditions Po and

"x(O/O) = x
o

(A .33)

for N points gives a solution to the TPBVP for ~(N/N). Using AN = 0

we would now simply solve (A.9) and (A.10) backwards to obtain x(j/N)

and AU/N), j = N-1,N-2,--,O. However, these backwards solutions

tend to be numerically unstable and are not in a convenient form for the

purposes of Chapter 2. Hence, we shall derive several alternative for­

mulas for finding the smoothed values x(j/N). These formulas will be

functions of the filtered quantities ~(j/j).

Fixed Point Forward Smoothing

We will now find a solution for ~(k/N) in terms of ~(k/N-1) and

x(k + 1/k). We begin by assuming solutions for x(k/N-1) which are

obtained from using all the relations obtained above with the index N

replaced by N -1. To get an expression for the Nth term Eq. (A.21)
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is substituted into (A.20) and the resulting equation is solved for

Ah(O/N). This is substituted into (A.19):

,.,
xh(k/N)

-1= -X(k) A (N) A (N)
p

(A. 34a)

Note that for k:S N, exactly the same relation holds for N - 1 so

-1= -X(k) A (N - 1) A (N - 1)
P

(A .34b)

When (A.34a) is used in (A.15),

~(k/N) = x (k) - X(k) A-1 (N) A (N)
p p

(A. 35)

But A (N) in the last equation is simply the particular solution to
p

(A.13) starting with the initial conditions (A.14) and hence can be

written

A (N)
p

(A. 36)

Next we use (A.24) to solve for x (N -1), substitute the result into
p

(A.36), and collect terms [also using (A.13)] to show

A (N)
p

(A. 37)

When the
-1

A term is factored out of the first bracket in (A.37) the

remainder can be recognized as the homogeneous equation (A.13) for A.

Hence
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(A .38)

(A.38) is now substituted in (A.35) to get the recursive relation

(A. 39)

..... T-1[ ..... l=x(k/N - 1) + W(k/N) HNRN YN - ~(N/N - l)J

where we have defined

(A.40)

We recall the definition (A.27) so

(A. 41)

A recursive update equation is readily .obtained for W qyevaluating

(A.40) in terms ofl\.(N -1) from (A.13):

(A .42)
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Equations (A.39), (A.41) and (A.42) combined with the forward filtering

equations (A.27), (A.28), (A.31) and (A.32) constitute a forward, fixed

point smoothing algorithm.

Alternate Smoothing Equations

There are a variety of equations which can be used to obtain smoothed

estimates satisfying (A.9) and (A.l0) once the filtering solutions have

been obtained. By storing filtered estimates only one n X 1 matrix

equation, rather than the two equations indicated need be solved back­

wards. The first step in this procedure is to use Eqs. (A.19) and (A.20)

to show

(A. 33)

To get an expression for the particular solution to A Eq. (A.29) is

solved, yielding

(A. 44)

Finally, Eqs. (A.43) and (A.44), combined with the defining relation

(A.25) can be substituted into (A.15) to obtain

A(k/N)

(A. 45)

A simple backward smoothing equation is obtainable by solving (A.9)

for ~(k/N) and substituting (A.45) into the result. This gives

(A.46 )
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This last equation is now rearranged and written as

where

(A.48)

When (A.47) is solved we get the desired backward recursive relation

"x(k/N)

(A .49)
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Appendix B

The preceding appendix developed a number of equations related to

generating least square state estimates for linear systems. This appen­

dix briefly derives some of the statistical properties of those esti­

mates utilized in Chapter 3.

The first such property is that the quantities P
k

+
1Lk

and

actually represent the covariance of the estimate error x
k

+l /
k

defined by

P
k+l

and

and

.~ A

X - x
k+l k+l/k

"-x - x
k+l k+l

(B.la)

(B.lb)

The true state is assumed to come from

(B.2a)

with known. Observations are generated according to

(B.2b)

The three random variables in this problem are assumed to be the two

noise sequences qk and v
k

and the initial error Xo = Xo - xo. All

these random variables are taken as being uncorrelated with zero mean.

Their covariances are

E{;;O~}

E {Vk V~} = Rk
(B.3)
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The proof that P is the covariance discussed above is based on

an inductive argument. It is true for k = 0 by hypothesis. We now

assume it is true for k and show that it is true for k + 1. Differen-

cing (A.32) and (B.2a) gives

x
k+1

so that

= Pk+1 / k

(B.4)

(B.5)

Similarly, with the aid of (B.2b) and (A.32) equations (A.32), (A.31)

and (B.2a) are differenced to get

-1
x = (I - P S)x - P H R v

k+1/k+1 k+1 k+1 k+1/k k+1 k+1 k+1 k+1

The covariance of this quantity is readily seen to be

(B.6)

+ P S P
k+1 k+1 k+1

(B.7)

From Eq. (A.28),
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which, when substituted into (B.7) gives
I

{~ "'T }E x x
k+1/k+1 k+1/k+1

which was to be shown.

(B.8)

Next some useful outer product orthogonality relations will be de­

rived. The first of these is that

i 0, ... N (B.9)

This relation is also proved by induction. In fact, by hypothesis

- {T} --TxEx -xxo 0 0 0
o (B.1 0)

We now assume (B.9) is true for i and show this implies its truth for

i = 1. In fact

E{J?l'+l~l'+l}= E{[1>.X. + p. 1 8 . 1(<!J·~· + G.q.) + p. 1H~ 1R~IIV' IJ1 1 1+ 1+ 1 1 1 1 1+ 1+ 1+ 1+

[~ ~ T -1 JT}. ~.x. + (I - p. 1 8 . l)G.q. - p. 1H. 1 R . IV. 11 1 1+ 1+ 1 1 1+ 1+ 1+ 1+
(B.11 )

When (B.11) is expanded and only the non zero expectations retained,

+ P. 18. 1 G . E{q.q:} G:(I - p. 8. )T
1+ 1+ 1 1 1 1 1+1 1+1

P. 1 8 . 1 [J>. p. ~': + G. Q . G': ] (I - p. 1 8 . 1)T - p. 1 8 . 1 P. 11+ 1+ 1 1 1 1 1 1 1+ 1+ 1+ 1+ 1+

(B.12)
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The term is brackets is identified as Pi+1/i and

so

o

which completes the proof of (B.9).

Having derived (B.9) it is easy to show that

i 2: j (B.13)

This is deduced by simply writing

x.
1

,.., ,..,
cDU+j)x. +

J

i-1
'" ¢ r(I P S )G q P H

T
R-1 v ]

~ i-1/k L - k+1 k+1 k k - k+1 k+1 k+1 k+1
k=j

(B.14)

By hypothesis, X. is normal to x., and independent of the gk and
J J

v
k
+

1
so when (B.14) is substituted into (B.13) the result is proven.

It is slightly more difficult to show that

i ::: j (B.15)

This requires an induction argument. By hypothesis, it is true for j = i.

We assume it is true for some k > i and show this implies it is true for

k+1>i. First, the estimate is written in closed form as

k

+ 2 cD (k/£) IP£+1H~+lR~~1 (H£+1 cD£i£ + H£+1G£q£ + v..e+1]
£=i [

(B.16 )
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When (B.16) is inserted into the left side of (B.15) we see that the

only term which can contribute to the expectation is the correlation be­
"'-'T

tween x£ and xi. But by hypothesis these expectations are zero so

the result is proven.

It is now easy to prove the two relations used in Chapter 3:

£ < N

£ < N

(B.17a)

(B.17b)

The smoothed quantities are just written as sums of the filtered quan­

tities using (A.49), and relations (B.13) and (B.15) used to show all the

terms give zero expectation.

Chapter 3 also uses the relation

(B .18)

One way to get this expectation is to use the forward update equation

(A.39). Before doing this, however, it is necessary to demonstrate that

the smoothed covariance obeys the forward update equation.

P n/ o = P n/ o 1 - WU/j)[So + S.P./. 1 S .JwT
(pJj)

h J h J- J J J J- J .

with initial conditions

(B.19a)

W(pj£) (B .19b)

The update for W is given by (A.42). In error equation form (A.40) be-

comes
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j £ + 1, £ + 2, ... N (A.20)

When each side of (B.20) is multiplied on the right by its transpose and

the expectation taken, we get

P n/
J
, P n/, 1 + W(£/j) S.P./. IS. + W(£/j)S.WT(£/j)

h h J-J J J- J J

- W(£/j)Sj E{ij/j_l~/j_l} - E{i£/j_l~/j_l} SjWT(£/j)

(B.21)

Using (B.21), we will now show that (B.19a) is true for j = £ +1 and

that its truth for any j-l implies its truth for j. For j = £+1,

(B.21) becomes

(B.22)

The last two terms in (B.22) can be combined with the preceding terms by

using (A.42). For example

(B.23)

Thus (B.22) can be rewritten
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which proves that (B.19a) is true for j = p, +1. We now assume that

(B.19a) is true for any j - 1 and prove its truth for j. We do this

by using (B.21) again. First, however, we induce that

{~ ..Jf }E x x
P,/j-l j/j-l = W(p,/j)(1 + S.P./. 1

J J J-
(B.25)

relying on the fact that (B.19b) is in fact true up to some j - 1. The

truth of (B. 25) for j = p, + 1 was essentially demonstrated during the

proof of (B. 23) . We assume (B. 25) is true for j - 1 so

E{';; ~ }= W(P,/j-l) (I + S P )
P,/j-2 j-l/j-2 j-l j-l/j-2

Using (B.20) and the update of x we find
j-l/j-2

(B.26)

[ ~ T J}• G. q. + <D. (I - P. s. )x. . - 1>. p. H. R.
J-l J-l J-l J-l J-l J-l/J-2 J-l J-l J-l J-l

{~ ~} T
= E x n/· 2x . 1/' 2 (I - S. I P , 1)<D· 1

v J- J- J- J- J- J-

W(Uj-l)(I + S. I P , 1/' 2)(I - s. I P , 1)<D~ 1J- J- J- J- J- J-

T .....1
W(P,/j-l)1>. 1(1 + S P )

J- j j/j-l

W(p,/j)(1 + s.p./. 1)
J J J-

(I + S.P./. 1)
J J J-

(B.27)

so that (B.25) is proved. The proof of (B.19a) is concluded by substituting

(B.25) into (B.21) to complete the induction.

With (B.19) proven it is now simple to prove (B.18). For N = P, the

relation is clearly true, as can be shown by using the filtering relation
A A

for xp,/P, as a function of xp,/P,+I' We now assume it is true for any

*·1 and show this implies it is true for N. In fact, using (A.39),
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Using the filtering relations starting with

we can see that

(B.28)

By induction, using these relations, it can be shown that

Hence, (B.28) becomes

84



BIBLIOGRAPHY

1. T. W. Anderson, An Introduction to Multivariate Statistical
Analysis, Wiley, New York, 1958.

2. Michael Athans, Richard P. Wishner, and Anthony Bertolini,
"Suboptimal state estimation for continuous-time non-linear
systems from discrete noisy measurements," Trans.~
Automatic Control Conference, June, 1968, pp 364-382.

3. M. S. Bartlett, An Introduction to Stochastic Processes,
The University Press, Cambridge, England, 1960.

4. R. W. Bass, V.D. Norum, and L. Schwartz, "Optimal multichannel
non-linear filtering," Journal of Math. Analysis and Applications,
vol. 16, 1966, pp 152-164.

5. J. V. Breakwell, "Slightly non-linear estimation with noisy
data," Proc. of AIAA Guidance Control and Flight Mechanics
Conference, Princeton, N. J., August, 1969.

6. Arthur E. Bryson and Malcolm Frazier, "Smoothing for linear and
non-linear dynamic systems," Proc. Optimum Sys. Synthesis
Conference, U.S. Air Force Tech. Rept., ASD-TDR-63-119, Feb., 1963.

7. Arthur E. Bryson, Jr. andYu-Chi Ho, Applied Optimal Control,
Blaisdell Publishing, Waltham, Mass., 1969.

8. Bjorn Conrad, "The effect of small non-linearities on several
common state estimation schemes," Proc. of Symposium on Non­
linear Estimation Theory and its Applications, Sept., 1970,
pp. 263-265.

9. Andrew H. Jazwinski, "Nonlinear filtering with discrete observa­
tions," AIAA paper 66-38, presented at the AIAA 3rd Aerospace
Sciences Meeting, New York, Jan., 1966.

10. R. E. Kalman, "A new approach to filtering and prediction
problems," Trans. ASME J. Basic Engrg., ser. D, vol. 82, 1960,
p. 35.

11. R. E. Kalman and R. S. Busy, "New Results in linear filtering
and pred iction theory," Trans. ASME J. Basic Engrg., ser. D.,
vol. 83, March, 1961, pp. 95-108.

12. J. S. Meditch, "Optimal Fixed-Point Continuous Linear Smoothing,"
Proc. of JACC, University of Pennsylvania, June, 1967.

13. Papoulis, Probability, Random Variables and Stochastic Processes,
McGraw-Hill Co., New York, 1965.

85



14. H. E. Rauch, F. Tung, and C. T. Strubel, "Maximum likelihood
estimates of linear dynamic systems," AIAA Journal, vol. 3, 1965,
p 1445.

15. L. Schwartz, "Approximate Continuous Non-linear Minimal-Variance
Fil ter ing," UCLA Report 67-17, Apr il, 1967.

16. C. K. Lee, Optimal Estimation, Identification, and Control, The
MIT Press, Cambridge, Mass., 1964.

17. P. Whittle, Prediction and Regulation by Linear Least Square Methods,
D. Van Nostrand Co., Princeton, N.J., 1963.

86



UNCLASSIFIED
Secunty ClassificatIOn

DOCUMENT CONTROL DATA· R&D
(Security classification 01 tlt/e, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION

Dept. of Aero and Astro
Stanford Univ., Stanford, Calif. 94305

UNCLASSIFIED
2b. GROUP

3. REPORT TITLE
STATE ESTIMATION WITH SMALL NON-LINEARITIES

4. DESCRIPTIVE NOTES (Type 01 report and Inclusive dates)

Technical Report
5· AU THOR(5) (First name, middle initial, last name)

Bjorn Conrad

8. REPORT DATE

March 1971
elf. CONTRACT OR GRANT NO.

F336l5-C-67-l245 &
F336l5-C-70-l637

b. PROJECT NO.

NASA NGR-Q5.02Q-019

71f. TOTAL ;4' OF PAGES I'b. NO. ~; REFS

9a. OFlIGINATOFl'S REPORT NUMBER(S)

SUDAAR No. 421

c. Task 510215 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

AFAL-TR-71- 222
d.

10. DiSTRIBUTION STATEMENT

~
Approved for public release; distribution unlimited. ~

~~~----r.-::~~~---~
It SUPPLEMENTARY NOTES AFSA;r~~i~;'L~b(AFSC'VITCode S(;-NASA HDQS ~

• :-=--:-=~::=- L...w_r_i_g_h_t_-_p_a_t_t_e_r_s_o_n_A_F_B-#_w_a_s_h_1_'n_
g
_t_o_n_2_5_'_D_'_C_,_~or- Ohio 45433 ~

13. ABSTRACT A i f h' ~var ety 0 tec n1ques are available for estimating the states of non-linear!
dynamic systems from noisy data, These procedures are generally equivalent when appliep
to linear systems. This report investigates the difference between several of these 1

procedures in the presence of small dynamic and observational non-linearities. :
Four discrete estimation algorithms are analyzed. The first is a strictly leastj

square estimator, while the other three are recursive algorithms similar to the Kalman ~

filter used for estimating the states of linear systems. The product of this research"
is a group of analytic expressions for the mean and covariance of the error in each of ~
those estimators so that they may be compared without lengthy Monte-Carlo simulations, ~

f·The covariance expressions show that, to first order, all the estimators have the j

same covariance. Expressions for the means, however, show that each estimator has a ~

different bias. Several examples are carried out demonstrating that the relative mag- ~

nitudes of the bias errors in the various estimators can be a strong function of such i
parameters as initial covariances and number of data points being considered. In fact,
under some circumstances it appears that more complicated (seemingly superior)
algorithms can have larger biases than smaller ones.

UNCLASSIFIED
Security Classification



UNCLASSIFIED
Security Classification

14. LINK A LIN K B LIN K C
KEY WORDS

ROLE WT ROLE WT ROLE WT

NOISY DATA

LINEAR SYSTEMS

DISCRETE ESTIMATION ALGORITHMS

LEAST SQUARE ESTIMATOR

RECURS IVE ALGORITHMS

KALMAN FILTER

ESTIMATOR

I

UNCLASSIFIED
Security Classification


